69. Syntheses and Crystal Structures of 4,5-Dihydro-2-(2'-hydroxyphenyl)oxazole-Containing Metal Complexes

by Carsten Bolm* and Konrad Weickhardt¹)

Institut für Organische Chemie der Universität Basel, St. Johanns-Ring 19, CH-4056 Basel

and Margareta Zehnder and Dorothea Glasmacher²)

Institut für Anorganische Chemie der Universität Basel, Spitalstrasse 51, CH-4056 Basel

(27.II.1991)

The synthesis of the complexes 3 of various metals ligated to chiral 4,5-dihydro-2-(2'-oxidophenyl- $\varkappa O$)oxazoles- $\varkappa N$ is described (*Scheme*). Three of them, *i.e.* 3a, 3e, and 3f containing Cu^{II}, Zn^{II}, and Ni^{II}, respectively, were analyzed by X-ray diffraction studies. A series of Cu^{II} complexes (6a-d) with differently substituted dihydrooxazoles have been synthesized.

1. Introduction. – In 1966, *Nozaki et al.* described the asymmetric cyclopropane formation catalyzed by the (salicylaldiminato)copper(II) complex 1 (salicylaldiminato ligand = $[C-(2-\text{oxidophenyl}-\varkappa O)\text{methanimine}-\varkappa N]$) [1]. This was one of the first enantioselective chemical transformations using catalytic amounts of homogeneous chiral metal complexes. Since then, a large number of efficient metal catalysts with bi- or multidentate *Schiff* bases, derived from substituted salicylaldimine derivatives, were developed. Modifications of the ligand led to high enantioselectivities in a variety of

reactions. *E.g.*, optically active Cu^{II} complexes were used in the synthesis of cyclopropanes [2], asymmetric epoxidation of simple alkenes was achieved with (salen)manganese complex 2 [3], and enantioselective cyclization was catalyzed by an analogous (salen)cobalt complex [4]. The general concept is based on the conformational rigidity induced by the metal—N bonds which creates an appropriate three-dimensional structure for chiral recognition of the substrate.

¹) Part of the projected Ph. D. thesis, Universität Basel.

²) Visiting student from the Technische Hochschule Aachen, Germany.

During our studies of new ligands for enantioselective catalysis [5], we have developed a facile synthesis of 4,5-dihydro-2-(2'-hydroxyphenyl)oxazoles [6]. Derivatives of this kind serve as chelating units in microbial metal-transporting agents which show high affinity and specificity for Fe^{III} [7]. In contrast to the great number of structural investigations of (salicylaldiminato)metal complexes, the corresponding 4,5-dihydrooxazole-containing compounds **3** have been rather neglected. This is even more surprising, considering the fact that other (4,5-dihydrooxazole)metal complexes have recently been shown to be efficient catalysts in asymmetric processes [8]. To investigate these species, we have synthesized several metal complexes and studied their properties and structures in solution and in the solid state.

2. Results and Discussion. – 2.1. *Synthesis*. The 2-hydroxybenzonitrile (4) reacts with enantiomerically pure aminoalcohols **5a**–**d** under ZnCl_2 catalysis to give the corresponding optically active 4,5-dihydro-2-(2'-hydroxyphenyl)oxazoles **6a–d** (*Scheme*) [6]. Mono-

and disubstituted derivatives are obtained in high yield. Treatment of an EtOH solution of **6** with a solution of the metal salt MX_2 or MX_3 (X = OAc or Cl) in EtOH results in either immediate precipitation of the metal complex [9], or crystals are obtained by slow evaporation of the solvent. The air-stable crystals [ML₂] are collected by filtration and can be recrystallized from EtOH. Complexes of Cu^{II} (**3a**), Zn^{II} (**3e**), Ni^{II} (**3f**), Co^{II} (**3g**), and Fe^{III} (**3h**) derived from 4,5-dihydro-2-(2-hydroxyphenyl)oxazole **6a** and the corresponding metal salt were synthesized and characterized by elemental analysis, NMR, IR, and UV spectroscopy. The crystal structures of complexes **3a**, **3e**, and **3f** were determined. A series of copper complexes, **3a–d**, with differently substituted dihydrooxazoles has also been synthesized.

2.2. Solid-State Structures. An ORTEP view [10] of copper complex 3a is shown in Fig. 1. Complex 3a crystallizes in the monoclinic space group $P2_1$ with two independent molecules per asymmetric unit (Z = 4) forming pseudodimeric complex molecules [Cu₂L₄] where each Cu-atom has a distorted square pyramidal configuration. The dihydrooxazole N-atoms and phenolato O-atoms in each molecule are located in an almost square planar arrangement with a small distortion towards a tetrahedral configuration.

Fig. 1. Molecular structure of 3a. ORTEP plot, 50% probability ellipsoids with atomic numbering; H-atoms omitted for clarity.

Fig. 2. Schematic drawing of the molecular arrangement of two molecules of 3a in the crystal. Selected atom labelling.

The deviation of the Cu-atom from the N-N-O-O plane is -0.146 Å towards the O-atoms. One of these two O-atoms is bonded to the Cu-atom of the neighboring molecule (Fig. 2). The Cu-atoms thereby become penta-coordinate. The intermolecular distances between the Cu- and the O-atoms of adjacent molecules are 2.76 and 2.80 Å.

Both tetrahedral and planar configurations have been reported for bis(N-alkylsalicylaldiminato- $\approx O, \approx N$) copper(II) complexes, depending on the nature of the alkyl groups [11]. For a comparison with 3, complexes with α -branched N-alkyl groups should be considered. In the case of i-Pr or t-Bu groups, they were found to be pseudotetrahedral in the solid state. E.g., bis(N-isopropylsalicylaldiminato- $\varkappa O, \varkappa N$)copper(II) has a tetrahedral structure with an angle between the salicylaldiminato planes of 60°, whereas the N-Ph-, and N-Me-substituted complexes are almost planar [12] [13]. Recently, Lehn and coworkers reported the crystal structure of a chiral bis(dihydrooxazole)copper(II) complex [14], with a dihedral angle between the two N-Cu-N planes of 52°.

In **3a**, the dihedral angles between C(5)-C(6)-C(7)-O(2) are -5.26 (molecule A) and -8.27° (molecule **B**), which indicates the small deviation from planarity between the benzene and 4,5-dihydrooxazole ring. The Cu–O distances of 1.91 and 1.89 Å (A) and 1.92 and 1.91 Å (B) and the Cu-N distances (1.94 and 1.95 Å for both A and B) are similar to the ones reported for bis(N-alkylsalicylaldiminato)copper(II) complexes. In 3a, the angles between O(1)-Cu-N(1) and O(3)-Cu-N(2) (90.2 and 91.2° (A) and 92.0 and 92.6° (B)) are slightly smaller than comparable angles in bis(N-isopropylsalicylaldiminato)copper(II) (94.4 and 95.0°) [11]. Significant bond lengths and angles for 3a are given in Table 1.

,	D)		\mathbf{A}^{a})	\mathbf{B}^{a})
1.941(7)	1.942(10)	O(1)-Cu-N(1)	90.2(4)	92.0(4)
1.950(11)	1.947(9)	O(1)-Cu-O(3)	74.7(4)	165.9(4)
1.911(7)	1.917(9)	O(1) - Cu - N(2)	89.9(4)	90.2(4)
1.889(7)	1.908(9)	N(1)-Cu-O(3)	89.6(4)	90.8(4)
1.268(14)	1.325(19)	N(1)-Cu-N(2)	169.5(5)	157.2(5)
1.266(14)	1.303(20)	O(3)-Cu-N(2)	91.2(4)	92.6(4)
_	1.941(7) 1.950(11) 1.911(7) 1.889(7) 1.268(14) 1.266(14)	1.941(7) 1.942(10) 1.950(11) 1.947(9) 1.911(7) 1.917(9) 1.889(7) 1.908(9) 1.268(14) 1.325(19) 1.266(14) 1.303(20)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1. Selected Interatomic Distances [Å] and Angles [°] for 3a, with Standard Deviation in Units of the Last Significant Figure in Parantheses

to two independent molecules in the asymmetric unit.

The colorless crystals of Zn^{II} complex 3e belong to the space group A2 of the monoclinic system. An ORTEP plot [10] of the structure is shown in Fig. 3. The Zn-atom has a distorted tetrahedral coordination configuration. The coordination tetrahedron has exact (crystallographic) C_2 symmetry with the metal centre on one of the two twofold axis (0,y,0) of the unit cell. The angle between the planes containing O(1)-Zn-N(1) and O(1')-Zn-N(1'), expressed by the dihedral angle between C(1)-O(1)-Zn-N(1'), is found to be 97.65°. Least squares planes calculations give a value of 96.1° for the angle between the two planes. The planes between the benzene ring and the heterocycle are only slightly twisted. The dihedral angle between C(5)-C(6)-C(7)-O(2) is -5.37° ; that of C(5)-C(6)-C(7)-N(1) is 175.15°. The Zn-O and the Zn-N bond distances of 3e are 1.913(2) Å and 1.976(2) Å, respectively. Whereas the former does not differ substantially

Fig. 3. Molecular structure of 3e. ORTEP plot, 50% probability ellipsoids with atomic numbering; H-atoms omitted for clarity.

	3e(M = Zn)	$\mathbf{3f}\left(\mathbf{M}=\mathbf{Ni};\mathbf{C}\right)^{\mathrm{a}}\right)$	$\mathbf{3f}\left(\mathbf{M}=\mathbf{Ni};\mathbf{D}\right)^{a}\right)$
M-N(1)	1.976(2)	1.870(3)	1.878(5)
M-O(1)	1.913(2)	1.838(4)	1.834(4)
N(1) - C(7)	1.314(3)	1.291(7)	1.282(9)
O(1) - M - N(1)	95.2(1)	92.7(2)	92.3(2)
O(1)-M-O(1')	109.6(2)	172.5(3)	173.7(3)
O(1) - M - N(1')	125.6(2)	87.5(3)	88.3(3)
N(1) - M - N(1')	109.0(2)	177.2(3)	170.9(3)

Table 2. Selected Interatomic Distances [Å] and Angles [°] for 3e and 3f

from values reported for similar *Schiff*-base complexes [15], the latter is relatively short. The angle O(1)-M-N(1) is larger in Zn^{II} complex **3e** than in Cu^{II} complex **3a** (95.2(1)° and 90.2(4) [92.0(4)]°³) resp.). Selected bond lengths and angles are given in *Table 2*.

The distorted square planar Ni^{II} complex **3f** forms stable green monoclinic crystals of space group A2 with two independent molecules per asymmetric unit, both having exact (crystallographic) C_2 symmetry with the metal centres on the two twofold axis of the side-centered lattice. The small distortion of the square plane is towards a tetrahedral configuration. The deviation of the Ni-atom from the N-N-O-O plane is -0.038 Å

³) Values for the second independent molecule in brackets.

Fig. 4. Molecular structure of 3f. ORTEP plot, 50% probability ellipsoids with atomic numbering; H-atoms omitted for clarity.

Fig. 5. Side view of the molecular structure of **3f**. ORTEP plot, 50% probability ellipsoids with atomic numbering; H-atoms omitted for clarity.

towards the N atoms. No significant difference between the two complex molecules were observed. ORTEP plots [10] are shown in *Figs.4* and 5. In comparison, α -branched bis(*N*-isopropylsalicylaldiminato)nickel(II) is paramagnetic and isomorphous with the corresponding Cu^{II} and Zn^{II} complexes. They have a distorted tetrahedral coordination [16–18]. Bis(*N*-cyclopentylsalicylaldiminato)- and bis(*N*-cyclohexylsalicylaldiminato)- nickel(II) are diamagnetic and have a planar structure in the solid state [19]. Each of the heterocycles in **3f** is planar. The degree of distortion between the planes of the ligands is indicated by the angles between O(1)–Ni–O(1') and N(1)–Ni–N(1'), found to be

172.5(3) $[173.7(3)]^{\circ 3}$ and 177.2(3) $[170.9(3)]^{\circ 3}$, respectively. Ni–N (1.870(3) $[1.878.(5)]^{\text{Å}3}$)) and Ni–O (1.838(4) $[1.834(5)]^{\text{Å}3}$)) bond distances do not differ substantially from other four-coordinate complexes. Selected bond lengths and angles are shown in *Table 2*.

2.3. *NMR Spectroscopy*. Zn^{II} and Ni^{II} complexes **3e** and **3f** were studied in solution by NMR spectroscopy. Both complexes were only slightly soluble in CDCl₃ and CD₃CN.

The ¹H-NMR spectrum of 3e in CDCl₃ shows only small chemical-shift differences compared to the spectrum of uncomplexed 4,5-dihydrooxazole 6a. Due to the low solubility of diamagnetic Ni¹¹ complex 3f in CDCl₃, its spectrum was recorded in CD₃CN and compared with the spectrum of 6a in the same solvent. In 3f, all aromatic-proton signals are shifted upfield with respect to those of 6a. The protons of the heterocycle show three distinct resonances. The chemical-shift difference $\Delta\delta$ of the Me groups in 3f is only 0.02 ppm, as compared to 0.06 ppm in 6a. The ¹³C-NMR spectrum of 3e was recorded in CDcl₃. All alkyl C-signals are shifted upfield with respect to those of 6a. The groups in 3e increases to 2.8 ppm, as compared to 0.1 ppm for the diastereotopic Me groups in 6a. The signals for the O-bearing aromatic C-atom and C(2) of the heterocycle are significantly shifted downfield (160.2 and 165.3 ppm for 6a, 170.0 and 170.5 ppm for 3e). Similar shifts are observed in Ni¹¹ complex 3f, the ¹³C-NMR spectrum of which was recorded in CD₃CN due to its low solubility in CDCl₃. As in 3e, the chemical-shift difference for the Me signals in 3f is relatively large (4.3 ppm). Both O-bearing C-atoms, C(2) of the aromatic ring and C(2) of the heterocycle, are found at low field (165.5 and 166.4 ppm, resp.).

3. Conclusions. – Stable metal complexes of optically active 4,5-dihydro-2-(2'-hydroxyphenyl)oxazoles are readily formed from the free ligands and metal salts in EtOH. Their coordination geometries differ from the related (salicylaldiminato)metal complexes. Their catalytic properties in asymmetric transformations are currently under active investigation.

Financial support by the Volkswagen-Stiftung, and the Ciba-Stiftung is gratefully acknowledged. C.B. thanks the Fonds der Chemischen Industrie, and the Treubel-Fonds for stipends. K.W. is grateful to the Stipendienfonds der Basler Chemischen Industrie for a graduate scholarship.

Experimental Part

General. The preparation of **6a** and **6d** has been described previously [6]. The yields for complexes **3a–h** are generally over 90%. M.p.: *Büchi 530*; uncorrected. UV: VIS(λ_{max} (ϵ) if not stated otherwise): *Hewlett-Packard* 8450A UV/VIS spectrometer. IR spectra (cm⁻¹): *Perkin-Elmer-781* IR spectrometer. NMR: *Varian-Gemini-300* (¹H, 300 MHz; ¹³C, 75 MHz) and *Varian-VXR-400* spectrometer (¹H, 400 MHz; ¹³C, 100 MHz); CDCl₃ solns. unless noted otherwise; chemical shifts in ppm rel. to internal TMS (= 0 ppm) for ¹H, rel. to CDCl₃ (= 77 ppm) for ¹³C, coupling constants *J* in Hz. MS: *VG-70-250* spectrometer.

(4S)-4,5-Dihydro-2-(2'-hydroxyphenyl)-4-isopropyloxazole (6a). Synthesized as described in [6]. ¹H-NMR: 12.36 (s, 1 H); 7.63 (d, J = 7.8, 1 H); 7.35–7.38 (m, 1 H); 7.00 (d, J = 8.3, 1 H); 6.86 (t, J = 7.5, 1 H); 4.37–4.44 (m, 1 H); 4.08–4.15 (m, 2 H); 1.80 (sept., J = 6.7, 1 H); 1.01 (d, J = 6.7, 3 H); 0.94 (d, J = 6.7, 3 H). ¹H-NMR (CD₃CN): 7.65 (dd, J = 7.9, 1.3, 1 H); 7.40 (td, J = 7.5, 1.6, 1 H); 6.97 (d, J = 8.4, 1 H); 6.90 (t, J = 7.5, 1 H); 4.51–4.43 (m, 1 H); 4.20–4.11 (m, 2 H); 1.80 (sept., J = 6.6, 1 H); 0.99 (d, J = 6.6, 3 H); 0.93 (d, J = 6.6, 3 H).

(4S)-4,5-Dihydro-2-(2'-hydroxyphenyl)-4-phenyloxazole (**6b**). Synthesized as described for **6a** [6] using 2-hydroxybenzonitrile (**4a**) and (S)- α -phenylglycinol (= (2S)-2-amino-2-phenylethanol; **5b**). Yield 87%. B.p. 185% 2 · 10⁻² mbar. [α]₅₈₉²⁶ = +40.4 (c = 2.27, toluene), [α]₅₇₈²⁶ = +43.6, [α]₅₄₆²⁶ = +53.6, [α]₄₃₆²⁶ = +155.6, [α]₅₆₅²⁶ = +613.4. IR (neat): 3070, 3040, 2970, 2910, 1645, 1620, 1585, 1495, 1460, 1370, 1315, 1260, 1235, 1160, 1130, 1070, 1035, 950, 905, 830, 760, 700, 685, 670. ¹H-NMR: 12.14 (s, 1 H); 7.72 (dd, J = 7.8, 1.0, 1 H); 7.26-7.42 (m, 6 H); 7.00 (d, J = 8.3, 1 H); 6.90 (td, J = 7.6, 1.0, 1 H); 5.44 (dd, J = 8.3, 1.7, 1 H); 4.77 (dd, J = 7.5, 1.5, 1 H); 4.22 (t, J = 8.3, 1 H). ¹³C-NMR: 166.3 (s); 160.1 (s); 141.5 (s); 133.6 (d); 128.8 (d); 128.2 (d); 127.8 (d); 126.4 (d); 118.7 (d); 116.8 (d); 110.4 (s); 79.0 (t); 68.8 (d). EI-MS: 240 (21), 239 (100, M^+), 210 (4), 209 (23), 208 (6), 181 (4), 180 (11), 148 (30), 121 (29), 120 (21), 119 (15), 104 (6), 103 (6), 93 (4), 92 (20), 91 (33), 90 (12) 89 (11), 78 (6), 77 (11), 65 (12), 64

(9), 63 (12), 51 (10), 50 (5). Anal. calc. for $C_{15}H_{13}NO_2$ (239.3): C 75.30, H 5.48, N 5.85; found: C 75.48, H 5.75, N 5.60.

(4S)-4-(tert-Butyl)-4,5-dihydro-2-(2'-hydroxyphenyl)oxazole (6c). Synthesized as described for 6a [6] using 2-hydroxybenzonitrile (4) and (2S)-2-amino-3,3-dimethylbutan-1-ol (5c). Yield 76%. M.p. 25°. [α]₅₈₉²⁶ = -60.5 (c = 2.44, toluene). [α]₅₇₈²⁶ = -63.2, [α]₅₄₆³⁶ = -72.2, [α]₅₄₆³⁶ = -125.4, [α]₅₆₅³⁶ = -150.53. IR (neat): 3060, 2960, 2900, 2860, 1640, 1620, 1580, 1490, 1420, 1390, 1360, 1305, 1255, 1230, 1205, 1190, 1150, 1125, 1070, 1055, 1030, 955, 910, 855, 825, 790, 750, 660. ¹H-NMR: 12.39 (s, 1 H); 7.63 (dd, J = 7.9, 1.7, 1 H); 7.36 (dt, J = 8.3, 1.7, 1 H); 7.00 (d, J = 8.4, 1 H); 6.86 (td, J = 8.5, 1.0, 1 H); 4.34 (dd, J = 10.0, 8.7, 1 H); 4.22 (t, J = 8.3, 1 H); 4.11 (dd, J = 10.0, 7.8, 1 H); 0.94 (s, 9 H). ¹³C-NMR: 165.1 (s); 160.0 (s); 133.2 (d); 128.0 (d); 118.5 (d); 116.7 (d); 110.6 (s); 75.0 (d); 680 (t); 33.8 (s); 25.8 (q). EI-MS: 220 (5), 219 (32, M^+), 163 (11), 162 (100), 161 (4), 134 (27), 121 (16), 120 (10), 107 (20), 92 (6), 91 (3), 77 (3), 65 (6), 57 (8), 41 (11). Anal. calc. for C₁₃H₁₇NO₂ (219.3): C 71.21, H 7.81, N 6.39; found: C 71.29, H 7.51, N 6.30.

Bis[(4S)-4,5-*dihydro-4-isopropyl-2-(2'-oxidophenyl-x*O)*oxazole-x*N]*copper(II)* (**3a**). A soln. of 0.091 g (0.5 mmol) of Cu(OAc)₂ in 10 ml of abs. EtOH was added to a soln. of 0.205 g (1 mmol) of **6a** in 30 ml of abs. EtOH. After 24 h at r.t., 0.225 g (96%) of **3a** were isolated as green crystals by filtration. Suitable crystals for X-ray analysis were obtained after recrystallization from EtOH. M.p. 221°. $[\alpha]_{389}^{29} = -1400$ (c = 0.0625, CHCl₃). UV/VIS (MeCN): 598 (7.11), 341 (3394), 287 (4177). IR (KBr): 2961, 1620, 1542, 1472, 1450, 1142, 1239, 1155, 1070, 855, 752. EI- and FAB-MS (NBA): 476 (1), 475 (14), 474 (48), 473 (55), 472 (100, M^+), 471 (59), 270 (10), 269 (18), 268 (32), 267 (33), 266 (19), 224 (31), 206 (24). Anal. calc. for C₂₄H₂₈CuN₂O₄ (472.1): C 61.06, H 5.99, N 5.94; found: C 61.09, H 6.25, N 5.83.

Bis[(4S)-4,5-dihydro-2-(2'-oxidophenyl-xO)-4-phenyloxazole-xN]copper(II) (**3b**). Prepared as described for **3a** using **6b** and Cu(OAc)₂. M.p. 238°. [α]²⁵₂₈₉ = -1297 (c = 0.1, CHCl₃). UV/VIS (MeCN): 584 (54.9), 344 (18430), 292 (15000). IR (KBr): 3060, 3030, 2970, 2910, 1620, 1540, 1490, 1475, 1450, 1395, 1350, 1265, 1230, 1155, 1140, 1080, 1030, 950, 935, 855, 755, 695, 665, 620. EI- and FAB-MS (NBA): 543 (16), 542 (51), 541 (61), 540 (100, M^+), 539 (56), 304 (23), 303 (41), 302 (62), 301 (75, [CuL]⁺), 300 (30), 289 (9), 241 (3), 240 (23), 239 (16), 224 (6), 208 (6), 185 (7), 184 (4), 183 (22), 182 (10), 181 (12), 166 (3), 154 (4), 153 (24), 122 (4), 115 (7), 104 (5), 103 (6), 92 (7), 91 (24). Anal. calc. for C₃₀H₂₄CuN₂O₄ (540.1): C 66.72, H 4.48, N 5.19; found: C 66.52, H 4.65, N 5.14.

Bis[(4S)-4-(tert-*butyl*)-4,5-*dihydro*-2-(2'-oxidophenyl- κ O)oxazole- κ N]copper(II) (3c). Prepared as described for 3a using 6c and Cu(OAc)₂. M.p. 265°. [α]²⁵⁸⁹₅₈₉ = -2160 (c = 0.1, CHCl₃). UV/VIS (MeCN): 622 (89.1), 343 (19510), 294 (16480). IR (KBr): 3060, 2960, 2900, 2870, 1615, 1590, 1545, 1470, 1450, 1400, 1390, 1365, 1350, 1575, 1240, 1215, 1150, 1140, 1085, 1060, 1030, 955, 930, 855, 755, 725, 690, 665, 620. EI- and FAB-MS (NBA): 782 (6, [Cu₂L₃]⁺), 780 (6), 564 (6, [Cu₂L₂]⁺), 562 (6), 503 (12), 502 (42), 501 (48), 500 (88, M^+), 499 (52), 297 (3), 284 (24), 283 (37), 282 (74, [CuL]⁺), 281 (69), 280 (50), 279 (6), 268 (4), 266 (4), 227 (7), 226 (46), 225 (19), 224 (100), 223 (7), 220 (10), 184 (11), 183 (17), 182 (23), 181 (23), 154 (11), 136 (8). Anal. calc. for C₂₆H₃₂CuN₂O₄ (500.1): C 62.44, H 6.45, N 5.60; found: C 62.63, H 6.10, N 5.43.

 $Bis[(4S,5R)-4,5-dihydro-4-methyl-2-(2'-oxidophenyl-×O)-5-phenyl]oxazole-×N]copper(II) (3d). Prepared as described for 3a using 6d and Cu(OAc)₂. M.p. 234°. [<math>\alpha$]₅₈₉²⁰ = -1294 (c = 0.07, CHCl₃). UV/VIS (MeCN): 594 (45.4), 340 (20330), 290 (16480). IR (KBr): 3070, 3030, 2980, 2930, 1620, 1540, 1500, 1470, 1450, 1395, 1350, 1270, 1235, 1155, 1140, 1125, 1095, 1070, 1030, 1005, 1000, 960, 920, 855, 805, 755, 700, 670, 665, 640. EI- and FAB-MS (NBA): 571 (18), 570 (51), 569 (63), 568 (100, M^+), 567 (63), 318 (10), 317 (17), 316 (44, [CuL]⁺), 315 (35), 314 (27), 254 (21), 253 (13), 224 (3), 198 (6), 197 (7), 196 (20), 195 (7), 194 (8), 185 (10), 183 (25), 182 (7), 181 (20), 165 (3), 153 (6), 133 (3), 132 (9), 121 (12), 117 (11), 115 (4), 91 (9), 53 (21). Anal. calc. for C₃₂H₂₈CuN₂O₄ (568.1): C 67.65, H 4.97, N 4.93; found: C 66.96, H 4.95, N 4.94.

Bisf (4S)-4,5-*dihydro-4-isopropyl-2-(2'-oxidophenyl-xO)oxazole-xNJzinc(II)* (**3e**). Prepared as described for **3a** using **6a** and Zn(OAc)₂. M.p. 288°. $[\alpha]_{589}^{20} = +245$ (c = 0.49, CHCl₃). UV (MeCN): 378 (26.2), 345 (7236). IR (KBr): 2960, 2920, 1615, 1465, 1444, 1391, 1340, 1255, 1235, 1158, 1070. ¹H-NMR: 7.67 (dd, J = 8.1, 1.9, 1 H); 7.30 (ddd, J = 8.7, 6.9, 1.9, 1 H); 6.87 (d, J = 8.5, 1 H); 6.53 (ddd, J = 8.1, 6.9, 1.2, 1 H); 4.39–4.44 (m, 1 H); 4.22–4.29 (m, 2 H); 1.91–1.95 (m, 1 H); 0.87 (d, J = 7, 3 H); 0.85 (d, J = 6.9, 3 H). EI- and FAB-MS (NBA): 746 (1, [L₃Zn₂]⁺), 745 (1), 744 (5), 742 (5), 740 (4), 479 (1), 478 (9), 477 (39), 476 (43), 475 (64), 474 (51), 473 (100, M^+), 472 (45), 471 (8), 270 (23), 268 (39), 206 (40), 205 (30). Anal. calc. for C₂₄H₂₈N₂O₄Zn (473.9): C 60.82, H 5.97, N 5.91; found: C 61.05, H 6.11, N 5.64.

Bis[(4S)-4,5-dihydro-4-isopropyl-2-(2'-oxidophenyl-xO)oxazole-xNJnickel(II) (3f). Prepared as described for 3a using 6a and Ni(OAc)₂. M.p. 192°. [α]²⁰₅₈₉ = +2280 (c = 0.05, CHCl₃). UV/VIS (MeCN): 612 (60.1), 498 (85.3), 377 (13340), 364 (13810), 304 (20250). IR (KBr): 3060, 2960, 2870, 1630, 1545, 1485, 1470, 1450, 1405, 1350, 1270, 1245. ¹H-NMR (CD₃CN): 7.41 (d, J = 8.0, 2 H); 7.14 (t, J = 7.5, 2 H); 6.54 (d, J = 8.7, 2 H); 6.43 (t, J = 7.4, 2 H); 4.46 (dd, J = 9.1, 3.0, 2 H); 4.30 (t, J = 9.1, 2 H); 4.12 (d, J = 8.6, 2 H); 2.44 (m, 2 H); 1.01 (t, 6.4, 12 H).

¹³C-NMR (CD₃CN): 166.4 (*s*); 165.5 (*s*); 134.4 (*s*); 128.7 (*d*); 123.8 (*d*); 115.5 (*d*); 110.0 (*s*); 69.7 (*d*); 65.6 (*t*); 32.3 (*d*); 19.2 (*q*); 14.9 (*q*). EI- and FAB-MS (NBA): 730 (21), 729 (11), 728 (25, $[L_3Ni_2]^+$), 524 (6), 470 (17), 469 (43), 467 (100, *M*⁺), 466 (96), 465 (12), 423 (6), 264 (17), 263 (27), 262 (39, $[LNi]^+$), 261 (20), 232 (5), 219 (9), 218 (9), 206 (22), 178 (20), 177 (14), 176 (43). Anal. calc. for C₂₄H₂₈N₂NiO₄ (467.2): C 61.70, H 6.04, N 6.00; found: C 61.71, H 6.14, N 6.08.

 $Bis[(4S)-4,5-dihydro-4-isopropyl-2-(2'-oxidophenyl-xO)oxazole-xN]cobalt(II) (3g). Prepared as described for 3a using 6a and Co(OAc)_2. M.p. 282°. [<math>\alpha$]_{589}^{2g} = +460 (c = 0.055, CHCl₃). UV/VIS (MeCN): 530 (11.9), 474 (log ε 8.63), 343 (18700), 309 (13310), 277 (19500). IR (KBr): 3070, 2970, 2930, 2880, 1615, 1590, 1540, 1485, 1470, 1445, 1400, 1390, 1345, 1260, 1240, 1160, 1070. EI- and FAB-MS (NBA): 731 (4), 730 (13, [L₃Co₂]⁺), 469 (24), 468 (100), 467 (64, M^+), 466 (6), 460 (5), 424 (5), 383 (3), 264 (5), 263 (31, [LCo]⁺), 261 (4), 219 (11), 206 (27), 205 (18), 177 (46), 162 (6). Anal. calc. for C₂₄H₂₈CoN₂O₄ (467.4): C 61.67, H 6.04, N 5.99; found: C 61.49, H 5.85, N 5.95.

Chlorobis[(4S)-4,5-dihydro-4-isopropyl-2-(2'-oxidophenyl- \times O)oxazole- \times N]iron(III) (3h). Prepared as described for 3a using 6a and FeCl₃. M.p. 238°. [x] $_{589}^{50} = -491$ (c = 0.003, CHCl₃). UV/VIS (MeCN): 464 (3571), 368 (3907), 295 (11720). IR (KBr): 3030, 2970, 2940, 2880, 1615, 1590, 1550, 1485, 1470, 1450, 1400, 1385, 1330, 1265, 1240, 1160, 1075. EI- and FAB-MS (NBA): 669 (2), 500 (8, M^+), 466 (8), 465 (41), 464 (100, [FeL₂]⁺), 463 (13), 462 (8), 378 (5), 295 (3), 292 (3), 260 (10, [FeL]⁺), 258 (3), 252 (3), 216 (8), 207 (13), 206 (93), 205 (11), 204 (6), 174 (27), 162 (7), 121 (4). Anal. calc. for C₂₄H₂₈CIFeN₂O₄ (499.8): C 57.68, H 5.65, N 5.61; found: C 57.40, H 5.67, N 5.51.

X-Ray Structure Analysis of **3a**, **3e**, and **3f**. Crystal data and acquisition parameters are given in Table 3. Suitable crystals for X-ray analysis were obtained by slow evaporation of the solvent at r.t. Data collection was carried out on an *Enraf-Nonius-CAD-4* diffractometer using the $\omega/2\theta$ scan mode. The structures were solved by *Patterson* techniques using the program SHELXS-86 [20]. No corrections for absorption were applied. Anisotropic full-matrix least-squares refinements were carried out for all non-H-atoms. H-Atoms were calculated with a C-H distance of 1.08 Å and refined isotropically using fixed thermal U values of 0.05. Final parameters and a list of bond

	3a	3e	3f
Molecular formula	$C_{24}H_{28}CuN_2O_4$	$C_{24}H_{28}N_2O_4Zn$	C ₂₄ H ₂₈ N ₂ NiO ₄
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P2 ₁	A2	A2
a [Å]	11.725(2)	12.034(3)	11.389(3)
b [Å]	17.404(1)	5.640(3)	10.068(3)
c [Å]	12.062(3)	19.359(5)	20.605(5)
α [°]	90.0	90.0	90.0
β[°]	109.03(2)	117.89(3)	92.83(3)
γ[⁰]	90.0	90.0	90.0
V [Å ³]	2327.0(3)	1161.2(2)	2359.7(2)
Z	4	2	4
$\Theta_{\rm max}$	28	28	28
Cryst. dimens. [mm]	$0.1 \times 0.1 \times 0.3$	$0.3 \times 0.2 \times 0.2$	$0.3 \times 0.2 \times 0.2$
Temperature [K]	293	293	293
Radiation	MoK _a	MoK _a	MoK _a
λ[Å]	0.71069	0.71069	0.71069
Scan type	$\omega/2\theta$	$\omega/2\theta$	$\omega/2\theta$
Coll. refl.	$\pm h, \pm k, \pm I$	$\pm h, +k, +I$	$\pm h, \pm k, \pm I$
μ [cm ⁻¹]	9.69	11.12	8.54
F (000)	988	496	984
No. of independent refl.	5799	2513	2994
No. of refl. in refinement	3357	1165	2506
No. of variables	580	148	292
Observations/variables	5.79	7.87	8.58
Final R_w factor	0.078 ^a)	0.074 ^a)	0.060
Weighting scheme	$1.52/(\sigma(F^2) + 1.35 \cdot 10^{-3}F^2)$	$3.58/(\sigma(F^2) + 1.24 \cdot 10^{-2}F^2)$	$1.0/(\sigma(F^2) + 4.96 \cdot 10^{-3}F^2)$

Table 3. Crystal Data and Data Collection Parameters for 3a, 3e, and 3f

lengths and angles are deposited at the *Cambridge Crystallographic Data Centre*, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England.

REFERENCES

- a) H. Nozaki, S. Moriuti, H. Takaya, R. Noyori, *Tetrahedron Lett.* 1966, 5239; b) H. Nozaki, H. Takaya, S. Moriuti, R. Noyori, *Tetrahedron* 1968, 24, 3655.
- [2] T. Aratani, Pure Appl. Chem. 1985, 57, 1839.
- [3] a) W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am. Chem. Soc. 1990, 112, 2801; b) R. Irie, K. Noda, Y. Ito, N. Matsumoto, T. Katsuki, Tetrahedron Lett. 1990, 31, 7345.
- [4] T. Takeichi, M. Arihara, M. Ishimori, T. Tsuruta, Tetrahedron 1980, 36, 3391.
- [5] a) C. Bolm, M. Zehnder, D. Bur, Angew. Chem. 1990, 102, 206; ibid. Int. Ed. 1990, 29, 205; b) C. Bolm, M. Ewald, Tetrahedron Lett. 1990, 31, 5011; c) C. Bolm, in 'Advances in Organic Synthesis via Organometallics', Eds. R. W. Hoffmann and K. H. Dötz, Vieweg Verlag, Wiesbaden, 1990, pp. 223.
- [6] C. Bolm, K. Weickhardt, M. Zehnder, T. Ranff, Chem. Ber. 1991, 124, 1173.
- [7] a) Vibriobactin: R. J. Bergeron, J. R. Garlich, J. S. McManis, *Tetrahedron* 1985, 41, 407; b) mycobactin: P. J. Maurer, M. J. Miller, J. Am. Chem. Soc. 1983, 105, 240; c) parabactin: Y. Nagao, T. Miyasaka, Y. Hagiwara, E. Fujita, J. Chem. Soc., Perkin Trans 1 1984, 183; d) for a crystal structure of agrobactin: D. L. Eng-Wilmot, D. an der Helm, J. Am. Chem. Soc. 1980, 102, 7719.
- [8] a) H. Brunner, U. Obermann, Chem. Ber. 1989, 122, 499; b) H. Brunner, U. Obermann, P. Wimmer, Organometallics 1989, 8, 821; c) H. Nishiyama, H. Sakaguchi, T. Nakamura, M. Horihata, M. Kondo, K. Itoh, *ibid.* 1989, 8, 846; d) H. Nishiyama, M. Kondo, T. Nakamura, K. Itoh, *ibid.* 1991, 10, 500; e) R.E. Lowenthal, A. Abiko, S. Masamune, Tetrahedron Lett. 1990, 31, 6005; f) D. A. Evans, K. A. Woerpel, M. M. Hinman, M. M. Faul, J. Am. Chem. Soc. 1991, 113, 726; g) E.J. Corey, N. Imai, H.-Y. Zhang, *ibid.* 1991, 113, 728; h) D. Müller, G. Umbricht, B. Weber, A. Pfaltz, Helv. Chim. Acta 1991, 74, 232.
- [9] For the synthesis of other [dihydro-(2-oxidophenyl)oxazole]metal complexes, see D. S. C. Black, M. J. Wade, Aust. J. Chem. 1970, 25, 1797.
- [10] K.C. Johnson, 'ORTEP Report ORNL-3794', Oak Ridge Natl. Lab., Oak Ridge, USA, 1965.
- [11] P.L. Orioli, L. Sacconi, J. Am. Chem. Soc. 1966, 88, 277.
- [12] E.C. Lingafelter, G.L. Simmons, B. Morosin, C. Scheringer, C. Freiburg, Acta Crystallogr. 1961, 14, 1222.
- [13] L. Wei, R. M. Stogsdill, E. C. Lingafelter, Acta Crystallogr. 1964, 17, 1058.
- [14] J. Hall, J.-M. Lehn, A. DeCian, J. Fischer, Helv. Chim. Acta 1991, 74, 1.
- [15] R. H. Prince, in 'Comprehensive Coordination Chemistry', Eds. G. Wilkinson, R. D. Gilliard, and J. A. McCleverty, Pergamon Press, Oxford, 1987, Vol. 5, pp. 925.
- [16] L. Sacconi, F. Mani, A. Bencini, in [15], pp. 1.
- [17] a) M. R. Fox, P. L. Orioli, E. C. Lingafelter, L. Sacconi, Acta Crystallogr. 1964, 17, 1159; b) M. R. Fox, E. C. Lingafelter, P. L. Orioli, L. Sacconi, Nature (London) 1963, 197, 1104.
- [18] L. Sacconi, M. Ciampolini, J. Chem. Soc. 1964, 276.
- [19] L. Sacconi, M. Paoletti, M. Ciampolini, J. Am. Chem. Soc. 1963, 85, 411.
- [20] G. M. Sheldrick, 'SHELX-86, Program for Crystal Structure Determination', Universität Göttingen, 1986.